Complexity in Cost-Effectiveness Modelling: Analyses Need to be Fit for Purpose

Mark Sculpher

Centre for Health Economics, University of York,

Outline

- Terminology
- Dimensions of complexity
- Some examples
- Increasing transparency in economic evaluations

Getting our terminology straight

Models need to be fit for purpose for <u>decision making</u> May lead to additional complexities

Necessary feature	Possible complexities
Compare all relevant options	Advanced meta-analysis - indirect and mixed comparisons - modelling of sequences
Generic measure of health (e.g. QALYs)	Mapping between disease-specific and generic outcomes
Relevant time horizon	Extrapolation beyond trial follow-up
Identify relevant sub-groups	Risk and interaction modelling
Reflect all uncertainties	Probabilistic analysis and scenario analysis

Complexity depends on features of the disease, interventions and evidence

Decision tree

- Comparison of 3 options
- Simple meta-analysis
- Time horizon= trial follow-up

Markov chain

- Extrapolate beyond trial
- States include mortality
- Constant risks of death

Semi-Markov model

- Risk of death changes
 over time
- Semi-Markov model
- Use of tunnel states

Case study I – glycoprotein IIb/IIIa antagonists in acute coronary syndrome

- Strategy 1: GPA as part of initial medical management [7 trials]
- Strategy 2: GPA in patients with planned percutaneous coronary interventions (PCIs) [1 trial]
- Strategy 3: GPA as adjunct to PCI [10 trials]
- Strategy 4: No use of GPA

Palmer *et al.* Management of non-ST-elevation acute coronary syndromes: how cost-effective are glycoprotein IIb/IIIa antagonists in the UK National Health Service? *International Journal of Cardiology* 2005;100:229-240.

Modelling GPAs

Trial characteristic	Modelling method
Extensive trial evidence on treatment effect	Random effects meta-analysis of relative risks
Partial comparison	Indirect treatment comparison: pooled relative risks from trials applied to common baseline risks
Non-UK case-mix and clinical practice	UK-specific baseline risks from observational study. Relationship between baseline risks & treatment effect explored with meta-regression
No resource use data	Resource use data from UK observational study attached to clinical events

Short-term time horizon

Extrapolation from 6 months based on Markov model populated from UK observational study

Case study II: drug eluting stents

- Comparison of drug-eluting and bare metal stents (as of 2005)
- Existing evidence consistent with no differential effect on mortality or myocardial infarctions
- Model simplifies:
 - Short-term analysis
 - QALYs a function of number of further revascularisations
- Complexity comes in evidence synthesis
 - 15 RCTs
 - Mixture of individual patient and summary data

Hawkins *et al. British Journal of Cardiology* 2005;12:AIC83-AIC91 Hawkins N, Sculpher M. *Podium presentation at ISPOR, Florence, Italy*, 2005.

Improving transparency

- Transparency to whom?
 - Decision makers
 - Third party assessors
 - Peer review
- Assess to electronic model
- Better reporting of models
 - Replication of model from report
 - Presentation of 'intermediate (clinical) results'
 - Comparison of alternative models

Increasing transparency

Screening for aortic aneurysm

Kim *et al.* A Markov model for long-term cost-effectiveness modelling of screening for abdominal aortic aneurysms. MRC Biostatistics Unit, Cambridge 2005.