
THE PROBABILITY INTEGRAL

‘On a donc fait un hypothèse, et cette hypothèse a été appelée loi des erreurs. Elle ne s’obtient pas des déductions
rigoreuses . . . “Tout le monde y croit cependent,” me disait un jour M Lippman, “car les expérimenteurs s’imaginent
que c’est un théorems de mathématiques, et les mathématiciens que c’est un fait expérimental”, H Poincaré, Calcul des
Probabilités, Paris: Gauthier-Villars 1896 and 1912.

We say that Z has a standard normal distribution if it has the probability density function

fZ(z) = φ(z)

where φ(z) is the function

φ(z) =
1√
2π

exp(− 1
2z

2).

According to Gnedenko, §22, the integral
∫ +∞
−∞ φ(z) dz is called the Poisson integral. Although this function is clearly

non-negative, it is by no means clear that it integrates to unity. There are a number of methods of showing that

I =

∫ ∞
0

exp(− 1
2z

2) dz =

√
π

2

none of which is obvious.

1. De Moivre showed (see A De Moivre, Approximatio ad Summam Terminorum Binomii a+ b\n in Seriem expansi
1733, reprinted in R C Archibald, A rare pamphlet of Moivre and some or his discoveries, Isis 8 (1926), 671–
683; translated with some additions in A De Moivre, The Doctrine of Chances (2nd edn), London: H Woodfall
1738, reprinted London: Cass 1967, A De Moivre, The Doctrine of Chances (3rd edn), London: A Millar 1756,
reprinted New York, NY: Chelsea 1967 with a biographical article from Scripta Mathematica 2(4) (1934), 316–333
by H M Walker) that if n = 2m and

b(x) =

(
2m

x

)(
1

2

)x(
1

2

)2m−x

=

(
2m

x

)
2−2m

then
b(x) ∼ 0.7976√

n

and the exact value of the constant was shown by James Stirling to be
√

2/π (see A Hald, A History of the Theory
of Probability and Statistics and Their Application before 1750, New York, NY, etc: Wiley 1990, §24.4). He then
went on to show that

b(m+ l) ∼ b(m) exp(−2l2/n) ∼
√

2

πn
exp(−2l2/n).

With σ2 taking its binomial value pqn = n/4 this is of the form

b(m+ l) ∼ 1√
2πσ2

exp(− 1
2 l

2/σ2) = σ−1φ(l/σ)

but De Moivre did not use the concept of variance and did not express it that way. Using the binomial theorem it
could be concluded that

1 =

+m∑
l=−m

b(m+ l) ∼
∫ +m

−m
σ−1φ(l/σ) dl

∼
∫ +∞

−∞
φ(x) dx.

It is not entirely simple to justify the limiting processes. De Moivre did not in fact make any remark about the
integral as such.



2. The first method by which the integral was explicitly calculated appears to have been given by P S Laplace in his
1774 paper Mémoire sur la probabilité des causes par les évenments. An extract from this paper reads as follows:
“. . . From this we can easily conclude

E =
(p+ 1) · · · (p+ q + 1)

1 · 2 · 3 · · · · q
.

ppqq

(p+ q)p+q

∫
2 dz · exp

(
− (p+ q)3

2pq
zz

)
.

Let −[(p+ q)3/2pq]zz = lnµ, and we will have∫
2 dz · exp

(
− (p+ q)3

2pq
zz

)
= −

√
2qp

(p+ q)2

∫
dµ√
− lnµ

.

The number µ can here have any value between 0 and 1, and, supposing the integral begins at µ = 1, we need its
value at µ = 0. This may be determined using the following theorem (see M. Euler’s Calcul intégral). Supposing
the integral goes from µ = 0 to µ = 1 we have 1∫

µn dµ√
(1− µ2i)

·
∫

µn+i dµ√
(1− µ2i)

=
1

i(n+ 1)
· π

2
,

whatever be n and i. Supposing n = 0 and i is infinitely small, we will have (1 − µ2i)/(2i) = − lnµ, because
the numerator and the denominator oof this quantity become zero when i = 0, and if we differentiate them both,
regarding i alone as variable, we will have (1 − µ2i)/(2i) = lnµ, therefore 1 − µ2i = −2i lnµ. Under these
conditions we will thus have∫

µn dµ√
(1− µ2i)

·
∫

µn+i dµ√
(1− µ2i)

=

∫
dµ√

2i
√
− lnµ

∫
dµ√

2i
√
− lnµ

=
1

i

π

2
;

Therefore ∫
dµ√
− lnµ

=
√
π.

Thus ∫
2 dz · exp

(
− (p+ q)3

2pq
zz

)
=

√
pq
√

2π

(p+ q)3/2
,

from which we obtain E = 1.” Taking p = q = 1/2 in Laplace’s result we get∫ ∞
0

exp(−2z2) dz =
√
π/8

and so on taking x = 2z ∫ ∞
0

exp
(
− 1

2x
2
)
dz =

√
π/2

or in other words I =
√
π/2.

1Cf. the equation ∫ π/2

0
sinα dt =

√
π

α

Γ((1 + α)/2)

Γ(α/2)

(R Courant, Differential and Integral Calculus (2 volumes), London and Glasgow: Blackie 1934–6, Volume II, Chapter IV, §6, page 338). We use the
substitution µn = cos θ to reduce the integrals to∫

1

i
cos(n−i+1)/i θ dθ and

∫
1

i
cos(n+1)/i θ dθ.

Essentially what it needs is that if

Ik =

∫ π/2

0
cosk θ dθ

then
IkIk+1 =

π

2(k + 1)
,

which as Ik = B((k + 1)/2, 1/2)/2 is easily seen to be equivalent to Γ(1/2)2 = π.
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3. The integral is commonly evaluated using a double integral. The first method based on a double integral depends
on noting that

I =

∫ ∞
0

exp(− 1
2z

2) dz =

∫ ∞
0

exp(− 1
2 (xy)2) y dx

for any y (on setting z = xy). Putting z in place of y, it follows that for any z

I =

∫ ∞
0

exp(− 1
2 (zx)2) z dx

so that

I2 =

(∫ ∞
0

exp(− 1
2z

2) dz

)(∫ ∞
0

exp(− 1
2 (zx)2)z dx

)
=

∫ ∞
0

∫ ∞
0

exp{− 1
2 (x2 + 1)z2} z dz dx.

Now set (1 + x2)z2 = 2t so that z dz = dt/(1 + x2) to get

I2 =

∫ ∞
0

∫ ∞
0

exp(−t) dt

(1 + x2)
dx =

(∫ ∞
0

exp(−t) dt
)(∫ ∞

0

dx

(1 + x2)

)
= [− exp(−t)]∞0

[
tan−1 x

]∞
0

=
[
1
][

1
2π
]

=
π

2

and hence I =
√
π/2 so that the integral of φ from −∞ to∞ is 1, and hence φ is a probability density function.

This method is apparently due to P.S. Laplace (1749–1827), Théorie Analytiques des Probabilités, §24, pages 94–95
in the first edition.; cf. I Todhunter, A History of the Mathematical Theory of Probability from the time of Pascal to
that of Laplace, Cambridge and London: Macmillan 1865, reprinted New York, NY: Chelsea 1949, art. 899. See,
e.g., G Valiron, Cours d’Analyse Mathématique (2 volumes), Paris: Masson 1947, Volume I, page 152.

4. The usual “double integral” method is based on defining I as above and noting that

I2 =

(∫ ∞
0

exp(− 1
2x

2) dx

)(∫ ∞
0

exp(− 1
2y

2) dy

)
=

∫ ∞
0

∫ ∞
0

exp{− 1
2 (x2 + y2)} dx dy.

We then change to polar co-ordinates (r, θ) in which dx dy = r dr dθ, so that

I2 =

∫ π/2

0

∫ ∞
0

exp
(
− 1

2r
2
)
r dr dθ =

(∫ π/2

0

dθ

)(∫ ∞
0

exp
(
− 1

2r
2
)
r dr

)
=
[
θ
]π/2
0

[
− exp

(
− 1

2r
2
)]∞

0

=
π

2

from which it follows that I =
√
π/2 so that the integral of φ from −∞ to ∞ is 1, and hence φ is a probability

density function. This method is apparently due to Siméon Denis Poisson (1781–1840) and was popularized by
Jacob Karl Franz Sturm (1803–1855)—see his Cours d’Analyse de l’école polytechnique, Paris: Mallet-Bachelier,
Volume 2, pages 16–17 which reads as follows:

“466. L’integrale

A =

∫ ∞
0

e−x
2

dx

a été déterminée par M. Poisson à l’aide d’un procédé très-remarquable. Si l’on change x en y, on aura encore

A =

∫ ∞
0

e−y
2

dy,

et, par suite,

A2 =

∫ ∞
0

e−x
2

dx.

∫ ∞
0

e−y
2

dy =

∫ ∞
0

∫ ∞
0

e−x
2−y2dxdy.

Soient mantainent trois axes rectangulaire Ox, Oy, Oz et

y = 0, z = e−x
2

,
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les equations d’une courbe située dans le plan zOx. Si cette courbe tourne autour de l’axe Oz, elle engendrera une
surface ayant pour équation

z = e−x
2−y2 ,

et l’intégrale double ∫ ∞
0

∫ ∞
0

e−x
2−y2dxdy,

réprésentera le quart du volume compris entre le surface et le plan xOy. On peut évaluer ce volume par le partageant
en une infinité de tranches cylindriques dont Oz soit l’axe commun. La tranche dont les surfaces extérieurs ont pour
rayone r et r + dr est égale à sa base 2πrdr multipliée par sa hauteur z on e−r

2

: on a donc

A2 =
1

4

∫ ∞
0

e−r
2

× 2πrdr =
1

4
π

d’où
A =

1

2

√
π.”

5. Another method comes from the fact that

Γ(z)Γ(1− z) =
π

sinπz

with z = 1
2—see E T Whittaker and G N Watson, A Course of Modern Analysis, Cambridge University Press 1902,

1915, 1920 and 1927. §12.14, J C Burkill and H Burkill, A Second Course in Mathematical Analysis, Cambridge
University Press 1970, §14.6, or E T Copson, Theory of Functions of a Complex Variable, Oxford: Clarendon Press
1935, §9.22.

6. Yet another method results from substituting u = exp(− 1
2z

2), giving

I =

∫ 1

0

du√
−2 lnu

.

Now note that, for x > 0,
x− 1

x
6 lnx 6 x− 1

which follows geometrically from the convexity of the logarithmic function, or can be easily established using
calculus to show, for example, that x− lnx has smallest value 1.

For 0 < v < 1 and for any positive integer n, write vn = v1/n, so that ln v = n ln vn. From the above inequalities
with x = vn,

n

(
vn − 1

vn

)
6 ln v 6 n(vn − 1)

from which
1√
2n

√
vn

1− vn
6

1√
−2 ln v

6
1√
2n

1√
1− vn

.

Integrating these inequalities between 0 and 1, we obtain

Jn 6 I 6 Kn

where

Jn =
1√
2n

∫ 1

0

√
vn

1− vn
dv and Kn =

1√
2n

∫ 1

0

1

1− vn
dv.

Now substitute vn = sin2 φ, i.e. v = sin2n φ. Then

Jn =
√

2n

∫ π/2

0

sin2n φdφ and Kn =
√

2n

∫ π/2

0

sin2n−1 φdφ.

It is thus clear (as integrals of powers of sinφ must decrease with the power involved) that

0 6

√
n

n+ 1
Kn+1 6 Jn 6 Kn.
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Furthermore, by the usual reduction method

Jn+1

Jn
=

Kn

Kn+1
=

2n+ 1

2
√
n(n+ 1)

> 1

so that
Jn+1Kn+1 = JnKn = · · · = J1K1 = π/2.

It follows that, as n → ∞, Kn decreases and Jn increases to a common limit
√
π/2. It follows that as Jn 6 I 6

Kn, we have I =
√
π/2. This method can be found in N Gauthier, Note 72.22 Evaluating the probability inte-

gral, Mathematical Gazette, 72 (1988), 124–125, and D Desbrow, Note 74.28 Evaluating the probability integral,
Mathematical Gazette 74 (1990), 169–170, but I am not sure whether it originated there.

7. It was long supposed that the integral could not be evaluated by the Cauchy method of residues, but it turns out that
it can be (see, e.g., J C Burkill and H Burkill, A Second Course in Mathematical Analysis, Cambridge University
Press 1970, Exercises 14(a), no. 15). This method depends on setting

f(z) = exp
(
πiz2

)
/ sin(πz)

which function has residue 1/π at z = 0. Then since

sin{π(z − 1)} = − sin{πz}

and
z2 = z(z − 1) + z and (z − 1)2 = z(z − 1)− z + 1

we see that
f(z)− f(z − 1) = 2i exp{πiz(z − 1)}.

By integrating f round a parallelogram with vertices± 1
2 ±R exp( 1

4πi), whereR is large, (putting z = t exp(iπ/4)
± 1

2 so dz = dt exp(iπ/4) along long sides) we see that∫ ∞
−∞

exp(−πt2)dt = 1.

This method was due to G. Pólya (1949). A previous method using contour integrals due to L.J. Mordell (1920)
“contains [the probability integral] as a special case, [but] the methods used by Mordell are too complicated and it
is not really worthwhile applying them to [this case]”. Another method is due to J.H. Cadwell (1947). For more
details, see D S Mitrinović and J D Kečkić, The Cauchy Method of Residues: Theory and Applications, Dordrecht,
etc: Reidel 1984, §5.3.4.10, pp. 158–168.

8. Recently T P Jameson (1994) (at the age of 16!) has suggested yet another method (subsequently suggested inde-
pendently by S P Eveson (2005)). Consider the volume under the surface z = e−(x

2+y2), which is clearly given
by

V =

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2)dxdy

=

(∫ ∞
−∞

e−x
2

dx
)2

.

This can, however, also be thought of as a volume of revolution about the z axis where as z = e−x
2

we have
x =
√
− log z. Using the standard formula for a volume of revolution

V = π

∫ 1

0

x2dz = π

∫ 1

0

{− log z} dz = π[−z log z + z]10 = π.

and hence ∫ ∞
−∞

e−x
2

dx =
√
π.
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(22) G Valiron, Cours d’Analyse Mathématique (2 volumes), Paris: Masson 1947.
(23) E T Whittaker and G N Watson, A Course of Modern Analysis, Cambridge: University Press 1902, 1915, 1920
and 1927.

P.M.L.

6


