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The theory of chances is one of the most curious
and most difficult parts of analysis, due to the delicacy
of the problems it produces and the difficulty of sub-
mitting them to calculation. It appears to have been
treated with the most success by M. Moivre, in an
excellent work entitled Theory of Chances. We owe to
this able geometer the first research that was done on
the integration of differential equations by means of
finite differences. The method that he invented for
that purpose is very ingenious, and he applied it quite
successfully to solve many problems concerning proh-
abilities, hut one must agree that the point of view
from which he considered the matter is indirect. Finite
difference equations are susceptible to the same con-
siderations as those involving infinitely small differ-
ences, and should be treated in an analogous manner;
the sole difference being that, in the case of infinitely
smail differences, one can neglect certain quantities
that it is not permissible to discard in the case of
finite differences. [t is this that renders the integration
of the latter a thorny problem; the illustrious M. de la
Grange is the first who has treated them in this
analogous manner, in an elegant memoir that can be
found in the first volume of those of Turin. The theory
of finite difference equations is of the greatest use in
the science of probabilities, and it is only by this means
that ane can hape far a general method to subject this
science to analytical treatment.

In seeking to solve many problems concerning
chances in this manner, I have frequently encountered
a type of finite difference equation quite different from
those previously considered. One can regard them as
partial difference equations. Their importance to the
analysis of chances is such that I devoted a memoir
to a particular manner of treating them, On recurro-
recurrent series, printed in this valume. In reconsider-
ing this subject, however, it appeared to me that it
was of such great utility in the science of chances that
a much more general means of treating them was

requited than had been previously found. This consid-
eration led to a much deeper study of the whole of the
theory of the integration of finite differential equa-
tions. I have treated this in = memoir that [ have read
to the Academy, entitled: Researches on the integration
of finite difference equations, and on their uses in the
analysis of chances. That memoir will appear in the
Academy’s volume for the year in which T read it,
1773. The object of this present memoir is quite dif-
ferent. [ propose to determine the probahility of the
causes of events, a question which has not been given
due consideration before, but which deserves even
more to be studied, for it is principally from this point
of view that the science of chances can be useful in
civil life.

The uncertainty of human knowledge is concerned
with events or with causes of events. If one is assured,
for example, that an urn only containg white and black
tickets in a given ratio, and one asks the probability
that a ticket drawn by chance will be white, then the
event is uncertain but the cause upan which the prob-
ability of its occurrence depends, the ratio of white to
black tickets, is known.

In the following Problem, an urn is supposed to
contain a given number of white and black tickets in an
unknown ratio; if one draws a ticket and finds it white,
determine the probabiity that the ratio of white to black
tickets 1s that of p to q. The event is known and the
catise is unknown.

One can formulate all problems of the theary of
chances as belonging to these two classes; we shall
only discuss those of the second class here. Ta this
end, we establish the following principle.

Principle

If an event can be produced by a number n of
different causes, the probabilities of these causes given
the event are to each other as the probabilities of the
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event given the causes, and the probability of the
existence of each of these is equal ta the probability
of the event given that cause, divided by the sum of
all the probabilities of the event given each of these
causes.

The following question will clarify this principle, as
well as being useful itself. I suppose that I am pre-
sented two urns, 4 and B, of which the first contains
p white tickets and g black tickets, and the second
contains p’ white tickets and ¢’ black tickets. I take
from one of these urns {I do not know which) f + &
tickets, of which f are white and h are black. We ask,
what is the probability that the urn from which I've
drawn the tickets is A, or that it is B?

If we suppose that this urn was A, the probability
of drawing f white tickets and h black tickets is

(f+ R (p+q—f~hpdg
fFlRl(p—fl@—-R'(p+ gt

Let K be this quantity. If we suppose now that the
urn. from which I have taken the tickets is B, the
probability of drawing f white tickets and h black
tickets can be determined by replacing p and ¢ by
p’ and g’ in K; let K’ be the resulting expression.
Then the probbilities that the urn from which I have
drawn the tickets is A or B, are by the principle given
above, as K:K’. The probability that the urn is
A=K/(K+ K’)and thatitis B=K'/(K+ K').

We shall now apply this principle to the salution of
several problems.

Problem |

If an urn contains an infinity of white and black
tickets in an unknown ratio, and we draw p + g tickets
from it, of which p are white and g are black, ther we
require the probability that when we draw a new ticket
from the urn, it will be white.

SoLuTioN. The ratio of the number of white tickets
to the total number of tickets contained in the urn
can be any fraction from 0 up to 1. Now, if we take x
as representing this unknown ratio, the probability of
drawing p white tickets and g black tickets from the
urn is x7 (1 — x)% Therefore, the probability that x is
the true ratio of the number of white tickets to the
total number of tickets is, by the principle of the
preceding section,

_ xP(0 —x)%dx
- JxP(1 — x)%dx’

the integral being taken from x = 0 to x = 1. Now,
under the supposition that x is the true ratio of white
tickets to the total number of tickets, the probability
of drawing a white ticket from the urn is x; if we now

multiply this quantity by the probability of the sup-
position, we will have for the probability of drawing a
white ticket from the urn with true ratio x,

2P dx(l — 09
[ x7 - dx(l — x)*°

Consequently, if we call E the total probability of
drawing a white ticket from the urn, we will have

[ xPT e dx(]l = x)¢
[ xP - dx(1 - %)

where the integrals begin at x = 0 and end at x = 1.
It is easy, from these twa expressions, to find a quite
simple exprassion for E. We have

f U dx(l — x)9

=_9
p+2

xP P de(l — x)9!

__alg-1)
(p+2)(p+3)

and so forth, therefore

fx"”‘ dx{l — x)¢
1.2-3..¢

T(p+Dp+3) - (prag+ 2’

f 273 dx(1l — x)9?

similarly

e 1.2.3...g
fx”dx(l x)“—(erl)___ ptqg+1)’

thus

__ptl
p+g+2
If we had sought the probability of drawing m white
tickets and n black tickets from the urn, we wauld
have found
E= [ x®" de(l — x)7"
[ x7de(l — x)7 '

from which we get E =

(g+1)0g+2)--- g+ n)(p+D(p+2)--- (ptg+1)
(p+m+1(p+m+2) ---(p+g+m+n+l}

If p and g are quite large, we can simplify this expres-
sion in the following manner. I observe that we have

Inl+In2+n3+--- +lnx
=Wn 27 + (x + Y)ln x — x + Viex — &,

7 being the ratio of a half-circumference to a radius
{see les Institutions du Caleul différentiel of M. Euler),
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and in the following we shall let e be the number

whose hyperbolic logarithm is unity. Then, supposing

p and g are very large numbers,

g+1qg+2)--- (g+n)

1.2-83---{g+n) (g+n*"2
1-2-3--.¢ emgrr !

similarly

(p + g+ Do
eq+lpp+1,-’2

(p+1)---(ptg+1) =

and

(p+m+1) - - (p+rg+m+n+1)

B (p +q +m+n+ 1)p+q+m+n+lf‘2

eq+n+1 )p+m+l/2

~(pt+tm
Thus,

_ (p+q+ 1)p+q+lf?(p+ m)p+m+l,’2(q+n]q+n+l/2
_q4+lf2 i pp+l,|’2 . (p + q +m+n+ 1)p+q+m+n+l/2 ‘

We note here that
(p+ g+ 1P = ofp + gy,

1 p+g+1/2
|+ —— =,
ptaq

supposing p + ¢ infinitely large. Apparently then if we
suppose m and n quite small relative to p and g, we
will have

because

(p + m}p+m+l/2 — empp+m+lf2‘
(q + n)q+n+l/2 = enqq+n+l{‘2’
and

(p + q +m+n+ 1)p+q+m+n+l{2

= em+n+l(p + q)p+q+m+n+lf2’

and so we will have
- P

(p+gm™

From this we can conclude, p and g being suppased
quite large, that, as long as m and n are very much
less, we can without fearing any appreciable error
calculate the probability of drawing white and black
tickets from the urn under the supposition that in this
urn the ratio of the number of white tickets is to that
of the black tickets as p: g. This supposition, however,
becomes false when m and n are quite large, and it
seems to me essential ta note this. To make this clear,
suppase m = p and n = g; then we have

pm.qn.

E=vn—L2 _ =g 2L
{p +q) (p+4q

This expression, as we see, differs from the one,
p"q"

(p+qgm™"

that we arrive at in taking p/(p + g) as the ratio of

the number of white tickets to the total number of

tickets contained in the urn.

The solution to this problem gives a direct method
for determining the probabhility of future events from
those which have already occurred, but this is quite a
broad subject, and I shall limit myself here to giving
a rather singular proof of the following theorem.

One can suppose that the numbers p and g are so
large that it becomes as close to certainty as one wishes
that the ratio of the number of white tickets to the total .
number of tickets contained in the wrn is included
between the two limits p/(p + g) —wand p/(p + q) +
w. w can be supposed less than any given quantity.

In order to prove this theorem, I observe that the
probability of the ratio x is, by the preceding, equal to

(p+Up+2) . --(p+tg+1)

27dx(l — x)7.

Let

and we have

xP dx(l — x)°

Potd + B + q
el [P (e B (S FCR )
(p+q)P™ p g
If we integrate this quantity from z = 0 to z = w, and
multiply this integral by

(p+1) ---(ptqg+1)
1.2.3..-¢ :

we will have the probability that the ratio of the
number of white tickets to the total number of
tickets is included between the limits p/(p + ¢) and

p/(p+q) +uw
Similarly, if we integrate

a P 9
piq“fdz(l_mz) | (1 .,_P_"_'_qz)
(p+ g™ p g

from z = 0 to z = w, and multiply this integral by
(p+ 1) - (p+g+ DAL -2 .83 ... q), we will
have the probability that the ratio of the number of
white tickets to the total number of tickets is included
between the limits p/{p + ¢) and p/(p + q) — w. The
sum of these two quantities then gives the proba-
bility that this ratio is contained within the limits
p/lp+ q) — wand p/(p + q) + w. Call this probabil-
ity E, and suppose that p and ¢ are infinitely large
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and that w, the largest value of z, is infinitely less
than 1/¥/p + ¢ and infinitely larger than 1/vp + g,
that it is equal, for example, to 1/{p + q)'*, n being
larger than 2 and less than 3.

If we now set In(1 — ((p + q)/p)2)” = u, we will
have, expanding in a series,

2 3
.(p;rpq) v — (pg;;q) S &

u=—(p+qz— c.

2
= exp(—(p + q)z — % 2z — &c.)

We can neglect the term —[(p + ¢)*/3p®|2® and suc-
ceeding terms, because the largest value of z, being by
supposition equal to 1/{p + ¢)"", gives exp[—({(p +
q)*/3p%)2°] equal to exp[—((p + ¢)**/3p")]. In the
case where e will have the largest negative exponent,
as when n is less than 3, this exponent is clearly
infinitely small, and therefore we can suppose

3
exp(— % 2* - &c)

equal to unity. We will similarly have

o 2
(1 +‘%2) = exp((p + q)z — % zz).

From this we can easily conclude

_p+tl) - (ptgt+1)

E

pPgt J‘ ( (p+ gP )
e 2dz . expl - ——— 22].
(p+ "™ 7 2m
Since
(p+1)---{ptg+ 1) _(p+qg™"”
1.2.3...q _pp+1f‘2qq+1f2\/2_ﬂ’
(p + @™ ( (p +q)° )
E="—="< | 2dz . expl - —" z2].
v2r Vpq P\ 2pg C

Let —[(p + q)*/2pglzz = In u, and we will have

(p+g)f° )
2 dz expl — ——— 2z
f p( 2pq

__ Vg du
(p+@)*J V-Ingu

The number g can here have any value between 0 and
1, and, supposing the integral begins at x4 = 1, we need
its value at y = 0. This may be determined using the

fallowing theorem (see M. Euler’s Calcul intégral).
Supposing the integral goes from g = 0 to p = 1, we
have

#n d,u. ‘ ,um—f d.p, _ 1 E
V(1 = p") VA= i+ l) 27

whatever be n and £. Supposing n = 0 and { is infinitely
small, we will have (1 — ¢*)/(2{) = —In g, because the
numerator and the denominator of this quantity be-
come zero when t = 0, and if we differentiate them
bath, regarding i alone as variable, we will have
(1 — £?)/(20) = In g, therefore 1 — u® = —2{ |n pu.
Under these conditions we will thus have

,(.Ln'+i d,ﬂ.

V(1 =

f p" du
V(1 —u*)

1
P2’

W .
Vai —In u Vai =ln p
Therefore

v—In g N

supposing the integral is from ¢ = 0 to ¢ = 1. In our
case, however, the integral is from g =1 to ¢ =0, and
we will have

% _
J - -
Thus
3 Vg Vor
fgdz exp(_mzz) _ Jpa Vo
2pg (p+aq

from which we obtain £ = 1. We see, then, that,
neglecting infinitely small quantities, we can consider
it certain that the ratio of the number of white tickets
to the total number of tickets is between the limits
p/(p+ g} + wand p/(p + q) — w, where w is equal to

1/¥%(p + ¢) and n is greater than 2 and less than 3, a

- fortiori when n is greater than 3 and therefore w can

be supposed smaller than any given quantity.
Suppose now that we wish to determine the error

made in setting E = 1, when we give z a very small

value w. Here is a quite simple means of obtaining it.
We need to integrate

. B q
fdz(l +£—+—qz) . (1 —mz)
p q

from z = 0 to z = w. Let K be this integral from z =0
to z = g/{p + q), an integral that is clearly too large
for our purpose, it being necessary to subtract the
integral [ dz(1 + [(p + ¢)/pla}? - (1 — {{p + q)/qlel”
fromz=wtoz=g/{(p+¢q) Let z=w + f, and we
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have

+ a + g

fdz(1+uz) -(1—uz)
p q

+ 3 q

=(1+uw) _(1_mw)
p q

(p + @wf — &¢ )
) d — )
f fexP( pg — wipp — gq) — w*(p + q)°

I note that w can, by the preceding, be supposed
infinitely larger than 1/+p + ¢. Suppose f infinitely
less than 1/vp + ¢, then we can neglect terms involy-
ing /2, 3, &c. in the exponent of ¢ and we will have

_ (p + Quf
f of e""( pg — wipp — 99) — wip + q)ﬂ)

_pg—wipp = qq) — wip + q)°
(p+qw

(p + @uf )]
1 - — )
[ exp( pg — wipp — qq) — wip + g)*

Suppose next that wf is of an infinitely greater order
than 1/(p + q), as is possible; then

_ (p + q)'uf )
exp( pq — wipp — qq) — w’(p + g)°

becomes negligible with respect to unity, and the
preceding integral becomes, under the supposition
that w is very small, equal to pg/(p + qw. We then
will have

+ a q
fdz(l-f-uz) -(l—mz)
P q

P L4
:(1+Q_-I-__qw)'(1_p+qw)' pqa .
p q (p + g)w

the integral being supposed to begin when z = w and
finish when z = w + 1/(p + g)", n being greater than
La. Now, the difference between this integral and the
entire integral taken from z = wto z = g/(p + q) is
infinitely less. To show this, I observe that if we
denate, far short, the quantity

p q
(l+p+q2) _(1_p+q)
p q

by vy, we will have, wHen z=w+ 1/(p + q)*, n being

larger than Y3,

P q
y:(H&r_qw) ,(l_mw)
p q
(£ + g "w )
- £X - .
p( pg — w(pp — qq) — wWp + g’

If we increase z, y becomes smaller, therefore [ y dz
fromz=w+ 1/(p + q)" to g/{p + q) is less than

(5 )
4
p+gq (p+q)

pg — w(pp — qq) — wp + 9%

Now, because we have supposed w/(p + ¢)" infinitely
larger than 1/(p + g), the preceding quantity is
infinitely less than pg/(p + ¢)w, since in general
e®" > o™ far any finite numbers m and n.

We thus will have

B . q
fdz(l-f-‘(—)-j—q—z) -(1—E—+—qz)
p q
(125 2u)
=K—-|[1+—uw
p

+ q
_(l_p qw)_ Pg__
q {(p+q)w

supposing the integral begins when z = 0 and ends

when z = w. Similarly, under the same conditions we
will have

3 q
fdz(l-i’ﬂz) _(Hmz)
fa q

s 14
=K’—(1—£—t—qw)
p

+ q
,(Huw) P
q (p+ qrw

where K’ is obtained from K by changing p to g and
g to p. As a consequence, we will have

{(p+1).--{(p+q+1) p*qe

E= )
1-2-3-.-¢q (p+q)*?
p+rqg Y ptq Y  pg
K—(1+—w) - [1-—w) - ———
p g (p+q)ruw
+ B + q
+K’—(1—uw) -(1+p qw)- P
p q (p+q)rw
But clearly,
(p+1l)---(p+q+1) pq?
) K)=1
1.2:3-.q (prgri 1)Th
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from which we easily find
_ v{pg)
wv(2r) - (p + q)**

+ A q
(1 +p_q w) -(l—p——+qw)
. P q
+ B + q
+(1—uw) -(l+uw).
p q

By means of this formula, we can judge the error made
in taking E = 1.

E=1

v
Problem Il

Two players A and B, whose respective skills are
unknown, play some game, for example piguet, where
the first player to win a number n points receives a sum
a deposited at the beginning of play. I suppose that the
two players are forced to abandon play with player A
lacking f points and player B lacking h potnts. In this
situation, we ask how we should divide the sum a
between the two players.

SoLuTIoN. If the respective skills of the two players
A and B were supposedly known, and they were in the
ratio of p to ¢, we would find, taking p + ¢ = 1, that
the sum that should be returned ta B equals

a - gft!

( 2

1+2 . G+h-1+5

q q
. UHh=DUrR=D o
] ‘ 12
prt (fth=1) - (h+ 1)

{ g 1-2.3.-(-1)

This proposition is proved in many works. It can be
quite easily deduced by the methad of recurrorecurrent
seties, as can be seen in the Memoir cited at the
beginning of this one; there the general solution to the
problem of points in the case of three or more players
is similarly deduced, a prablem that had not previously
been resoclved by anyone, to my knowledge, although
geometers who have worked on these matters have
long desired the solutian (see the second edition of the
Analyse des jeux de hasard of M. Montmort, page 247).

Now, hecause the probability that A will win a point
is unknown, we may suppase it to be any unspecified
number whatever between 0 and 1. Suppose that one
of these numbers x represents this probability; then
the probability that of 2n — f — h points, A wins
n— fand B, n — h, would be x" {1 — x}"* It then
follows from the principle of section II that the prob-

ability of the value we have supposed for x is

N1 — ) dx
2" — x)" " de’

the integral being taken beginning at x = ¢ and ending
at x = 1. Now, x being supposed the probability that
A wins a point, we find that the sum that should be
returned to B is

a(l —_ I} f+h—1

X
1+:(f+h.—1)

2 {f+h—-1)-(f+h—2}
e 19 + &ec.

. 2 (f+h=1 .. (h+ 1)
L 1-2"t 1.2.9.---(f-1)

Thus the sum that should really be returned to player
Bis

afx""'dx {1 — gyt

2 u+h—1y.4h+nJ
(1—-xF" 1:2-3---(f-1)

fx"dy - (1—x)"""

£
[1+;(f+h—l]

1

both integrals being taken from x = 0 to x = 1. It is
easy ta show that

fx”’fdx (1= x)nh
1-2.3---{(n—~h)

Tln—f+1) - @n—f-h+1)

similarly

1-2-3.-.(f+h-1)
(n—f+1)---2n

H

fx"‘"dx (L= x)tl=

" and so forth. Then we will have for the sum that

should be returned to B,

aln—h+1}..-(h+f—1)
CGn—f—h+2)..-2n

[ +h-1 (n—f+1)
1+ 1 (f+h-1)

LUth=1) (f+h=9) (= f+D—f+2)
1-2 (f+h—1(f+h—2)

(f+h—-1)---h+Da—f+1) - -(r=1)
1-2.8-.-(f=1) (f+h—1)---(h+1)
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v

We can, by means of the preceding theory, solve the
problem of determining the mean that one should take
among many given observations of the same phenom-
enon. Two years ago [ presented such a solution to
the Academy, as a sequel to the Memoair “Sur les
Séries récurrorécurrentes” printed in this volume, but
it appeared to me to be of such little usefulness that I
suppressed it before it was printed. I have since
learned from Jean Bernoulli’s astronomical journal
that Daniel Bernoulli and Lagrange have considered
the same problem in two manuscript memoirs that I
have not seen. This announcement both added to the
usefulness of the material and reminded me of my
ideas on this topic. I have no doubt that these two
illustrious geometers have treated the subject more
successfully than I; however, [ shall present my reflec-
tions here, persuaded as I am that through the consid-
eration of different approaches, we may produce a less
hypothetical and more certain method for determin-
ing the mean that one should take among many
ohservations.

Problem LI

Determine the mean that one should toke among
three given observations of the same phenomenon.

SOLUTION. Let time be represented by a line AB
(Figure 1}, and suppose that the first observation fixes
the instant of the phenomenon at the point a, the
second at the point b, and the third at the point ¢
Suppose further that the time unit is seconds, and
that the interval from « to & is p seconds and that
from b to ¢, g seconds. We wish to find the point ¥V on
the line AB where we should fix the mean that we
should take between the three observations a, b,
and c.

For this we must observe that it is more probable
that a given ohservation deviates from the truth by 2
geconds than by 3 seconds, by 3 seconds than by 4
geconds, &c. The law by which this likelihood dimin-
ishes as the difference between the observation and
the truth increases is unknown, hawever. Suppose
then {Figure 2) that the point V is the true instant of
the phenomenon, and that the probabilities that the
observation differs from the truth by VP, VP’, &c.
can be represented by a curve RMM * which decreases
according to an unspecified law. If we represent the
ahscissa VP by x and the corresponding ordinate PM
by v, then we shall write the equation of this curve as
y = ¢(x}. This curve has the following properties.

1. It must be divided inta two entirely similar parts
by the line VR, because it is just as probable that the
observation deviates from the truth to the right as to
the left.

2. It must have the line KP as an asymptote, be-
cause the probability that the observation differs from
the truth by an infinite distance is evidently zero.

3. The entire area of this curve must be equal to
one, because it is certain that the chservation will fall
on one of the points of the line KFP.

Suppose now (Figure 1} that the true instant of the
phenomenon is at the point V, at the distance x from
the point a. The probability that the three observa-
tions a, b, and ¢ deviate by the distances Va, Vb, and
Ve will be ¢(x} - ¢(p — x) - ¢(p + ¢ — x). If we
suppose the true instant were at the point V' and that
aV’' = x', then this probability would he = ¢{x’) -
dlp—x') - ¢lp+ g — x'). It follows then from our
fundamental principle of section II that the probabil-
ities that the true instant of the phenomenon is at the
points V or V', are to each other as ¢{x) - ¢{p — x) -
dlp+qg—x):dplx’} - ¢(p—x') - ¢(p+qg—x"). Thus
if we construct a curve HOL with the equation y =
¢(x) - o(p — x) - ¢{p + ¢ — x), the ordinates of this
curve would represent the probabilities of the corre-
sponding points on the abscissa.

In seeking the mean that we should choose among
many ohservations, there are two objects we may have
in mind.

The first is the instant such that it is equally prob-
able that the true instant of the phenomenon falls
before it or after it. We can call this instant the mean
af probability.

The second is the instant that minimizes the sum
of the errors to be feared multiplied by their probabil-
ities. We can call this the mean of error ot astronomical
maean, since it is that which astronomers should give
preference to.

To find the first mean, it is necessary to determine
the ordinate OV which divides the area of the curve
HOL in two equal parts, since then it is clearly as
probable that the true instant of the phenomenon falls
to the right as to the left of the point V.

To find the second mean, it is necessary to choose
{Figure 3) a point V on the abscissa such that the sum
of the ordinates of the curve HOL, multiplied by their
distance from the point V, is a minimum. Now I claim
that the second mean differs not at all from the first.
To see this, introduce the ordinate ou infinitely close
to OV, and let Vu = dx, OV = y. Let § be the center
of gravity of the part uoL of the curve; let M be the
area of this part; z the distance from the point & to
the ordinate OV. Let P be the center of gravity of the
part VOH; let N be the area of this part; and let 2’ be
the distance from P to the ordinate OV. Then if we
take the point V as the mean, the sum of the ordinates
multiplied by their distances from this point will be

Mz + Nz’ + Vaydy?,
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and if instead we take u for the mean, the sum of the
ordinates multiplied by their distance from the point
u will be

Mz — dx} + N(z' + dx)} + Yaydx?

Now we see that the difference of these two quantities
will ' he Ndx — Mdx, which must be equal to zero in
the case of a minimum. We will thus have in this case
M = N; that is, the ordinate OV will divide the area
of this curve in two equal parts. We thus see that the
astronamical mean differs not at all from that of
probability, and that hoth are determined by the ordi-
nate OV that divides the area of the curve HOL in two
equal parts.

To find this ordinate, it is necessary to know ¢(x).
But of an infinite number of possible functions, which
choice is to be preferred? The following considerations
can determine a choice. It is true (Figure 2) that if we
have no reason to suppose the point P more probable
than the point P, we should take ¢(x) to be constant,
and the curve ORM * will he a straight line infinitely
near the axis KP. But this supposition must be re-
jected, because if we suppose there existed a very large
number of observations of the phenomenan, it is pre-
sumed that they become rarer the farther they are
spread from the truth. We can also easily see that this
diminution cannot be constant, that it must become
less as the observations deviate more from the truth.
Thus not only the ordinates of the curve RMM’, but
also the differences of these ordinates must decrease
as they become further from the point V, which in
this figure we always suppose to be the true instant of
the phenomenon. Now, as we have no reason to sup-
pose a different law for the ordinates than for their
differences, it follows that we must, subject to the
rules of probabilities, suppose the ratio of two infi-
nitely small consecutive differences to be equal to that
of the corresponding ordinates. We thus will have

do{x + dx) _ ¢(x + dx)

do(x)  — #lx)
Therefore

dolx) _

T - me{x),

which gives ¢{x) = Ce™™". Thus, this is the value that
we should choose for $(x}). The constant € should be
determined from the supposition that the area of the
curve ORM equals unity, which represents certainty,
which gives C = Yam. Therefore ¢{x) = (m/2)e™™, e
being the number whose hyperbolic logarithm is unity.

One can ohject that this law is repugnant in that if
x is supposed extremely large, ¢{x) will not be zero,
but to this I reply that while e™™ indeed has a real
value of all x, this value is so small for x extremely
large that it can be regarded as zero.

Now, accepting this law, we determine the area of
the curve HOL (Figure 1).

1. From a to b, the ordinate of the curve HOL is
y = {m?/8)e ™70 Therefore, the area of the curve
in this interval will be = {m?/8) . e @+ (gm — 1),

2. From b to ¢, the ordinate of the curve will be y =
(m?*/8)e~™**9_ and the area of the curve in this inter-
val will be = (m?*/8)e (e ™ — ¢ ™).

3. From ¢ to infinity, the area of the curve will be
= (m?/3 - 8)e P+,

4, From a to infinity, on the side of A, the area of
the curve will be = (m?/3 - 8)e ™" The whole area
of the curve is thus

___(mﬂx“e—m{mql(l _ 1/38””” — 1/39—mq)'

We can observe that the point V, such that the
ordinate OV divides the area of the curve into two
equal parts, must necessarily fall between the points
aand b, supposing p > g, or between b and ¢, supposing
g > p. This is because the area of the curve to the left
of the ordinate bR is

(m?/8)e~mirral(] — pa=mey

which is clearly greater or smaller than half the entire
area according to whether or not p is greater than or
less than ¢. We suppose that p is greater than ¢ in the
following calculations; then to determine the distance
x of the point a from the point V where we should fix
the true instant of the phenomenon, we will have the
following equation.

mPe T = TR 4 Lhe ™ — Lhe ™),
from which we find

x=p+ (I/mlIn{l + YVae ™ — Lae ™),

Remark on the Method of Arithmetic Means

The method commonly in use among observers con-
sists of taking an arithmetic mean of the three obser-
vations, which gives x = (2p + ¢)/3. Now this method
follows from the preceding formulae with m =
or infinitely small, because then we have In(1
lae™™ — lhe M} = Lhe T — Lhe7™ Naw g™
3 — Yamp and Yae™™ = Y4 — Yamg, so 1/m In(l
Yae™™ — lhe ™) = — Yip + Vag. Therefore, x
p+ (1/m)n(l + Vae™ — e ™) = (2p + ¢)/3, the
same value given by the method of arithmetic means.

The supposition that m 1s infinitely small makes
(Figure 2) all points on the line KP equally probable,
at least up to an extremely large distance, which is
very unlikely both by the nature of the problem and
by the result of calculation, as we shall see in a
moment. This supposition may often be felt to be
unnatural, and in delicate circumstances it may be
necessary to make use of the following method.

If m were known, it would be easy to find the value

h+ 1 4+
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of x by the above method, but as m is unknown,
recourse to other means of obtaining this value is
required.

From the fundamental principle of section II, the
probabilities of different values of m are to each other
as the probabilities that the three observations have
the respective distances between them that they do,
given the different values of m. Now, the probabilities
that the three observations a, b, and ¢ (Figure 1) differ
from one another by the distances p and g, are to each
other as the areas of the curves HOL corresponding
to different values of m, as we can easily verify. From
this it follows from the principle of section II that the
probability of m is proportional to

midm - e PR — YaeTm — 1feTma)

and we see from this that the probability that m = 0
or infinitely small (the supposition that leads to the
method of arithmetic means) is infinitely less than
that m equals any finite quantity whatever.

Next, if we denote by v the probability, correspond-
ing to m, that the true instant of the phenomenon
falls at a distance x from the point a, the whole
probability that this instant falls at this distance will
be proportional to

fme dm - e P (1 - % e P — % e‘"‘q),

the integral being taken from m = 0 to m = o. If we
then construct a new curve H'KL' on the axis AB
whose ordinates are proportional to this quantity, the
ordinate Kg which divides the area of this curve in
two equal parts cuts the axis at the point we should
take as the mean hetween the three observations,

The area of this new eurve will evidently be propor-
tional to the integral of the product of the area of the
curve HOL by

m2dme " F*N(1 — Yhe P — Yoo,

Then since in order to determine x under a particular
supposition for m we have

miemitpre—x) - mze—m(mq)(l + lae ™™ — e ™),

we will have

1 1
u‘t a —mi3p+2¢—x) I i
f m* dme (1 3 e 3 e )
. _ 1 _ 1
= m(J.’Jr:n,ae’“("""”2‘5”1+§«e’“’”—§e”“;r

1 1
. B
| (1 3e 3e ),

where the integrals go from m = 0 to m = .

To integrate these quantities we should observe that

f m* dmeHm

K K
1y wm  4Am® 3-4.m*
SR T gm e J PO

4m® . 3.4
e
K* K3

mZQ-Km

. 1-2-3-4-5 ..
K* K ¢
and because this integral vanishes when m = 0, we
have
1.2.3-4-5
K* ’

C=

Then, since the integral ends at m = oo, we have in
that case m*e 5™ = 0, m% %™ = 0, &c. Therefore

fm4dm-xm=1-2-£5-4-5’

and in order to obtain x we have the following
equation,

1 1 1
(Bp+2g—xf° B8(dp+2¢—x)° 3(3p+3g— 2

11
(&) 1 2 _ 1 N 1
(2p+29)° 3(2p+38q)° 94p+29)° 9(2p+4q)°°

This is a 15th degree equation and gives 16 values for
x, but we should observe that in the case of the
preceding problem, x must be positive and less than
p, which makes a great number of these values useless.
If there were many that satisfy these two conditions,
though, it would be impossible to determine which is
preferable. Fortunately, this does not happen here,
and we shall see that there is only one that satisfies
them, which is esential for the usage of this method.

Suppose that one of the roots of x is p — f, and let
K stand for the second term of the equation (w). We
will have

1 3 1 : 1 K
(2p+2¢+fY 3(3p+29+f)° 32p+3g+fY

Suppose that p — f — w is a second root of x, f + u
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being positive and less than p. We will then have
1

(2p+ 2q+f}5(1 +

9 3
2p+2g+f
1

3:(3p +2g +f)5(1 +

- - -
3p+2+f
1
- 5=K.
3p+3q+)14+—
(2p +3q f}( 2p+3q+f)

Let
1

(9p+2g +f)5(1 +

u )5
Ip-+9+f
(2p+2q+f) L)’
1

5
s i
(3p+ 29 +f) (1+37p+2q+f)

T@Bp2g+fr\ )
1

(2p+3q +f)5(1 +

y 3
2p+3g+f

ot (.1
(2p+ 3q+f)* i
where [, {’, 1" may be positive or negative, according
to whether u is positive or negative. Further, we will
havel< i’ and [ < {”, and
1 B 1
2p+2+f¥ 3l'Sp+2g+f)°

1
TRp g
But we have
1 _ 1
p+2+fY 3l3p+2+f)°
I S
3U2p+3qg+fY U

So

K, 1 (1 1
1 3Gp+2g+f)r\d U

g (i1
32 +3q+f¥\L 1"

Now K must necessarily be positive, so this equation
is clearly impossible unless we suppose

%=0, Il'=0’ and E%=0,
which would give u = 0. Thus there is only one root
of x which satisfies the conditions prescribed ahove.

The difficulty of solving the equation {w) for x
makes the use of the preceding method extremely
laborsome, but one can employ it in delicate eircum-
stances, where the mean among several observations
is required with precision. While in the preceding
problem we have only considered three observations,
it is clear that the solution is entirely similar for any
number whatever.

To give an example of the preceding method and
how to use it, suppose (Figure 1) that the observations
b and ¢ coincide, so g = 0, and setting x = pz, the
equation (w) gives

2 1 1.3299
33—z 34—z)° 3.29°

and letting (3 — 2}/2 = u, we will have

/o
= -
1.3229 + 1/(Ye + p)

If in a first approximation we neglect the term
/(Y2 + u)°, we will have a first value for x which,
substituted in the equation, will give a closer second
value of y, and so forth. In this manner I have found
1 = 1.0697, which gives z = 0.860. Therefore x = p -
0.860. This is consequently the mean that one should
take among three observations of which two coincide.
For example, if the first gives the instant of
the phenomenon at m" 30’ 0” and the other two at
m” 30" 10", we should suppose the true instant
of the phenomenon is m® 30° 8/6. From the
method used by astronomers we would find it to he
m* 30" 6"%. We thus see that the preceding method
gives an instant closer to the two coincident ohserva-
tions, and that this conforms better with the proba-
bilities. So we easily see that the mean that should be
taken among three observations of which two coincide
is not given by the method of arithmetic means.

Here now is a small table that I have constructed
for the use of observers. As the value g had heen
supposed in our calculations to be less than that of p,
I have made it successively equal to 0 . p, 0.1 - p,
0.2 - p, 03 - p, &c., up to p. I have calculated the
corresponding values of x. If the value of g were to fall
between two of these decimals, it would be easy to
find x by interpolation.

For the use of this table, we should observe that x
expresses the distance from the extreme observa-
tion that differs most from the intermediate one, to



LAPLACE'S 1774 MEMOIR 375

the mean that we should take among the three
observations.

g=0p x=p - 0860
g=01p x=p - 0894
g=02p x=p - 0916
q=03p x=p- 0932
g=04p x=p-0944
g=058p r=p 0955
g=086p x=p . 0.965
g=01p x=p-0975
g=08p x=p. 0984
q=09p x=p-0992
g=p x=p
Vi

The preceding theory has led me to the following
considerations which are perhaps not useless in the
theory of chances, and with which I end this memoir.

I suppose that A and B play “heads or tails” under
these conditions: if A throws heads on the first toss,
B will give him two écus; he will give him four if A
doesn’t throw heads until the second toss, eight if he
doesn’t throw it until the third, and so forth until x
tosses are complete. It is easy to determine A’s expec-
tation, the sum that he should give to B hefore hegin-
ning the game. For let y, be this sum, then if we
suppose that the number of tosses instead of x is
increased by one, it is clear that the A’s expectation
will be increased by 2**! écus times the probability
(1/2**'} of obtaining this on the toss x + 1. We will
thus have y..;, — ¥. = 1, from which we find by
integrating, v, = ¥ + C, C heing an arbitrary constant.
Now for x =1, ¥, = 1, sa €= 0. Thus A should give B
x écus.

In this solution, we assumed that the coin which
was tossed in the air had no tendency to favor either
heads or tails. Now, this supposition is only mathe-
matically admissible because physically there must he
an inequality. But as the two players A and B are
ignorant of it at the beginning of the game, of which
side has the greater tendency, we can helieve that this
uncertainty neither increases nor decreases the advan-
tage. We shall see, however, that nothing is less
founded than this supposition, that it follows that the
science of chances must be used with care, and must
be modified when we pass from the mathematical case
to the physical.

We shall examine the consequences of supposing
that the coin has a greater tendency to fall on one side
or the other. Let {1 — w)/2 be the probability that

when the coin is tossed in the air, heads or tails (we
do not know which) will occur. If {1 + x)/2 is supposed
the probability of heads, A's expectation will he equal
to )
(I+ml+(1l-m+ (A —7P+---+{1—7a)"]

={1+1r)[(1—1r)‘— 1]

-

if we supposed the probability of heads is {1 — 7)/2,
then A's expectation will be equal to ((1 — =)
- [(1 + x)* — 1])/7. Now since it is as natural to
attribute the probability (1 + 7}/2 to heads as to tails,
if we let E be A’s expectation we will have

{1—mn)

E=1+ [(1+xp' = (1 ==},

and if we regard 7 as very small, we will have, if x is
not too large,

_ (x—1Hx—=2)(x—3) (x—1)
E—x+}[ 1. 2.3 ] }mr.

So A's expectation is less than x if x is between 1 and
§, and it is equal to x if x = 5. After a larger number
of tosses, A's expectation hecomes greater than x, and
taking x infinite, it is infinitely larger.

Since the value of x is unknown, it is hardly possible
to evaluate A’s expectation for a number n of tosses;
however, if we are assured that = cannot exceed a
certain quantity, for example 1/q, but that it is equally
able to be any fraction between 0 and 1/q, then we
can calculate A's expectation in the following manner.

If we conceive of the fraction 1/g as partitioned into
an infinity of equal parts, represented by dr, it is clear
that the element of A's expectation will be equal to
Eqdr, and that the total expectation will be

= f q dfr(l + (I—;:l) [(1+ =z —(1- Tr)"l])

s (n—n(n—z)(n—a)_(n—n}L
1-2-3 1 3g*

+][(n—1)---(n—5)_(n—1)---(n—z}L
1-2-3-4-5 1.2.3 5¢*

+ &c.

(after integrating and adding the appropriate con-
stant). If we suppose g quite large, this quantity is
reduced to its first two terms, as long as n is suffi-
ciently small, and A’s expectation will then be

. (n—n(n—z)(n—a)_(n—n}i
" 1-2-3 1

3q?°
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It is remarkable that this expectation will be less
than n when the number of tosses is between 1 and 5,
that it will equal n when n = b, and finally that it will
he larger when n is larger than 5.

If we suppose n = 2 and 1/¢, = Vi, A’s expectation
will equal 2 — Va0 écus, from which we see that A
plays with a disadvantage if he only givea B 2 écus,
because he should only give him 2 — Vi écus.

If we seek the probabhility of abtaining heads in two
tosses, we find by this method that it is equal to Y4 +
1/12qq, consequently greater than Vi It follows that
we deceive ourselves in calculating these probabilities
in the ordinary manner, that is, without paying atten-
tion to the inequalities that may be found between the
two faces of the coin.

These considerations give rise to a new type of
problem concerning chance, one quite useful in the
application of the caleulus of probabilities. We see
that even if we are ignorant of which side of the coin
has the larger prohahility, this uncertainty can make
the lot of one of the players more advantageous than
the other. It is thus of great interest to know in
which different cases, which player has the greater
advantage.

But it is principally in the application of the science
of probabhilities to the game of dice that this theory
requires modification. Often a die which appears to be
a perfect cube will exhibit a quite appreciable unequal
tendency toward its different sides, such that in a
large number of tosses one face will appear more
frequently than another. This can be due to the het-
erogeneity of the material the die is made from, or to
a lack of a perfectly cubical shape, as I have observed
even with the most regular and the most homogeneous
dice I could find, and more particularly with what, are
called English dice. We shall now examine the changes
that these inequalities produce in the solutions of
problems concerning the game of dice.

A and B play together with the condition that if A
throws a given face of a die in any one of n tosses, B
will give him the sum a. We ask what sum A must
give to B.

By the theory of chances, we find that A’s expecta-
tion is ¢ — (6"/6")a, and that this is the sum that he
must give to B. This solution supposes that all faces
of the die are perfectly equal, which is only true
mathematically speaking.

Let {1 + «)/6 be the probability that one of the
faces of the die (we are ignorant of which} will he
thrown at the first toss; let

1+ 1+ a”
6 ' 6 ' ! 6

be the probabilities the other faces are thrown on the

first toss. We will have

1+7r+1+1r’+
6 <] 6

sor+a’+ - + =¥ =0 Now if we suppose that the
given face has the probability (I + #)/6 of bheing
thrown on a single toss, the probability that it will not
occur in n tosses will he

G+x' +xa"+ . +x") (B-m"
6n - 6” 1

A’s expectation is thus

a(l - —————(5 ;nr)”).

Similarly, if the probability that the given face will
be thrown on the first toss is {1 + 7 ’)/6, we will have

A’s expectation
B-=)
= 1 —_———————
{0z

and so forth. It follows that A’s true expectation is

G-mn" G-z (5 — "y
6n+l a 6n+1 - a 6n+l

If we suppase «, 7/, 7%, &c. are quite small and n
fairly large, we will have this expectation

5"  nmn-1) 5**
6:10‘ 1 . 2 ) 6n+~l

calrt w4 o+ 2V,

from which it follows that if =, «*, &¢. are not zero,
which would be physically impossible, A’s expectation
18 less than a — (6"/6™)a, unless n = 1. Thus, it follows
that A, in @ving to B the sum a — (6"/6")a, plays at a
disadvantage.

If n were a large number, we would find A’s expec-
tation equal to

a_ga_n(n—l]
6" 1-2
n—12 .
© g g+ 7+ 7.+ V]
+n(n— 1)(4?1—2)635"'3
1.2.3 g+l
cEt A w4+ 2V + &e

Now since it is as natural to suppose =, ', &c
negative as positive, it is clear that we should discard
terms where they are raised to an odd power, thug A’s
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expectation will be

_g _’1'(_”'_:_1_}&’2 2 7 Ve
a Gna 2 Gnﬂa[ﬂ. +x+ -+
_n(n—1}n — 2)(n — 3) 5"
1.2.3.-4 gt

+ 7Y — &e.

which is always less than a — (5"/6")a whatever n is.
If the quantities m, 7' x”, &c. are unknown, but we
are assured that they can neither exceed 1/q, nor be
less than —(1/q}, we propose to find A's expectation.
This problem presents many difficulties and re-
quires particular consideration, because the quantiti-
ties m, =’, =", &c. are mutually dependent, which
renders the various values they may take more or leas
probable. To simplify calculation, instead of a die
imagine a triangular prism which can only fall on the
three rectangular faces. In this case, supposing r quite
small and n fairly large, A’s expectation is
an n{n — 1) 22
a——-a————
3= 1.2
Here # + #’ + «#” = 0, and we will have =" =
—x — x'; thus A’s expectation is
2" nin — 1) 277!

a—§a—ﬁ3ﬁ;‘la[7:2+fﬂr+f’2].

cafnt 4 .

gart afr? + x'% + 7",

I now suppose =’ positive and constant, and 1 seek
A’s expectation in this case. To this end, I multiply
the preceding quantity by dr, which after integrating
gives

2n ni{n — 1)

a‘ﬂ'_ﬁa‘ﬂ'_ 1.2
2n—1 1 i 2
© 3 a|i§1r3+1r; +fr’21r]+C.

Now the largest positive value # can have is 1/g —
x’, 80, supposing the integral vanishes when = = 0,
we will have C = 0 and the integral corresponding to
positive T is

a 2"a 1 , nin —1})

S22 M1\ _ptn—1)

3" g 1.2

e fifr N = N a1,
3n+l 3 q ™ 2 q T T q m .

For the integral corresponding to negative =, I put
negative 7 in the above expression for A’s expectation,
which then becomes

n -1 -l
—%a—% --%a(:rz—fr’r+7r’2).

4]

If we multiply this quantity by d= and integrate, we
will have

2n-—l
e a(% x— é r'r? + r"":rr).

Now the largest value = can have in this case is 1/g.
We thus will have for the total integral corresponding
to negative ,

( _g‘a)l_n(n—l)
3"/ q 1.2

2t (1 1 1,1
Jp— —_—— = g =1
3n,+1 Bqﬂ 2 q2 Gl q

If we add this integral to the preceding, it is clear that
their sum expresses the sum of all of A’s expectations
which correspond to this value of n*, and consequently
to all possible = from —(1/g) to 1/¢g — =*. This sum
will be

( on (2 N nar-—1)

a—_—4a - = -

3 \g ™ " 1.2

2vt L1 ,3+1+:r'22 )
. cal=- - - —+ —|=-— 7]
qnr+l 1 q ™ 3q3 92 q

If we multiply this quantity by d=’ and integrate it,
we will have

20 A2, 1\ _nn—1) 207
173G T2 1.2 3

4 Trfa 1 '
"V — -zt + —r + C
r) 3¢ 8" 3q’} ¢

Evaluating this from ¢’ = 0 to 7’ = 1 /g, we get

( ik ) 3 nn-1)
73 Y oq T1-2 ¢
This expresses the sum total of A’s expectation cor-
responding to all possible positive variations of 7’; to
have the resulting expectation for A, it is clearly
necessary to divide this sum by the total number of
possible positive variations of 7’. Now, the number of
corresponding variations of 7, is, by the preceding,
2/q — =’; multiplying by dr’ and integrating, we find
3/2qq as the divisor for the preceding quantity. Thus
A's expectation, corresponding to positive = ', is

5 . 2n—4
3n+lq4 *

2" n(n -1} gn-3 5a
3:1‘1 1.9 '3n+2'q2'

a —
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Now, the expectation which corresponds to negative
«' is clearly the same, as we would as soon wager that
«' is negative as positive: the total of A’s expectation
is thus

r nin — 1)

a — —

2% 5a
3727 T g

) g2 : q:r'

Following the same process, we could obtain the so-
lution to the preceding problem in the cases where the
solid would have 4, 5, 6, &c. faces. The only additional
difficulty is the length of the calculation.

These examples are sufficient to show the precau-
tion needed in applying the mathematical considera-
tions of the calculus of probabilities to physical ob-
jects, We suppose in the theary that the different ways
in which an event can occur are equally probable, or
where they are not, that their probabilities are in a
given ratio, When we wish then to make use of this
theory, we regard two events as equally probable when
we see no reason that makes one more probable than
the other, because if they were unequally possible,
since we are ignorant of which side is the greater, this
uncertainty makes us regard them as equally probable.

When it is only a question of simple probabilities,
it would appear that this inequality of probabilities
would not diminish the correctness of applying this
caleulus to physical objects. If B, for example, agrees
to give two écus to A if a head occurs on the first toss,

then by the theary, that is, supposing head and tail
equally possible, A should give B one écu before begin-
ning the game. It is the same, as we can easily assure
ourselves, if we were to suppose an unequal probability
for heads and for tails, where we were ignorant of
which side is the greater. But when composite praba-
bilities are in question, it appears to me that our
application of this theory to physical events requires
modification. For example, if at the game of heads and
tails B wagers with A that a head will not occur on
either of two tosses, the probability that B will win is
clearly composite, since it is the probability that a
head will not oceur on the first toss, and that it will
not occur on the second toss, multiplied together.
Now, in this case the probability for B from the
ordinary theary is %4, while if instead we suppose heads
and tails unequally possible, this probability is larger
than V.

This aberration in the ordinary theory, which has
not to my knowledge been previously noted by anyone,
appears to me to merit the attention of geometera. It
seems ta me that it is essential to consider it whenever
we apply the calculus of probabilities to the different
objects of civil life.!

! Section VII of the Memoir, which announced four theorems
concerning differential equations which were totally unrelated to
Sections [-VI, is omitted.



